integral adalah anti/invers/kebalikan dari differensial
1. ∫ k x^n dx = k/(n+1) x ^ (n+1) + C
Contoh:
- ∫
7x^7 dx = ⅞ x^8 + C
- ∫
3x² + x dx = x³ + ½x² + C
2. ∫ k dx = kx + C
Contoh:
- ∫ dx
= x + C
- ∫ 4
dx = 4x + C
4. ∫ cos (ax + b) dx = (1/a) sin (ax+b) + C
Contoh:
- ∫
sin 2x dx = -½ cos 2x + C
- ∫
cos ( 3x-1) dx = ⅓ sin ( 3x-1) + C
5. ∫ [f(x)]^n f’(x) dx = [1/(n+1)] [f(x)] ^
(n+1) + C
Contoh:
Tentukan ∫2x √(x²-1) dx
Jawab:
Misal f(x)= x²-1 → f’(x)= 2x
maka
- ∫ 2x
√(x²-1) dx = ∫ [f(x)]^½ f’(x) dx
- ∫ 2x
√(x²-1) dx = [1/(½+1)] [f(x)] ^ (½+1) + C
- ∫ 2x
√(x²-1) dx = (2/3) (x²-1) ^ (3/2) + C
6. ∫ sin^n x cos x dx = [1/(n+1)] sin ^ (n+1) x + c
Contoh:
- ∫
sin x cos x dx = ½ sin²x + c
7. ∫ cos^n x sin x dx = -[1/(n+1)]cos ^ (n+1) x + c
Contoh:
- ∫ cos²
x sin x dx = -⅓ cos³x + c
8. ∫ (1/x) dx = ln x + C
9. ∫ e^x dx = e^x + C
RUMUS INTEGRAL TRIGONOMETRI DASAR
∫ sin x dx = -cos x + c
∫ cos x dx = sin x + c
∫ tan x dx = ln│sec x│+ c
∫ cot x dx = ln │sin x│+ c
∫ sec x dx = ln │sec x + tan x│+ c
∫ csc x dx = ln │csc x – cot x│+ c
∫ sec²x dx = tan x + c
∫ csc²x dx = -cot x + c
∫ sec x tan x dx = sec x + c
∫ csc x cot x dx = -csc x = c
INTEGRAL PARSIAL
∫ u dv = uv - ∫v du
Contoh:
Tentukan ∫x sin x dx !
Jawab:
Misal
x = u → dx = du
sin x dx = dv → -cos x = v
maka
∫x sin x dx = -x cos x +∫ cos x dx
∫x sin x dx = -x cos x + sin x + c
INTEGRAL SUBTITUSI
Contoh:
Tentukan ∫ (3x + 1)³ dx
Jawab
Misal 3x + 1 = u → 3 dx = du → dx = ⅓ du
∫(3x + 1)³ dx = ∫ ⅓ u³ du = (1/12) u^4 + c = (1/12) (3x+1)^4
+ c
0 comments:
Post a Comment