Saturday, May 21, 2016

Integral

integral adalah anti/invers/kebalikan dari differensial

1.   ∫ k x^n dx = k/(n+1) x ^ (n+1) + C
Contoh:
  • ∫ 7x^7 dx = ⅞ x^8 + C
  • ∫ 3x² + x dx = x³ + ½x² + C

2.   ∫ k dx = kx + C
Contoh:
  • ∫ dx = x + C
  • ∫ 4 dx = 4x + C

3.   ∫ sin (ax + b) dx = -(1/a) cos (ax + b) + C

4.   ∫ cos (ax + b) dx =  (1/a) sin (ax+b) + C
Contoh:
  • ∫ sin 2x dx = -½ cos 2x + C
  • ∫ cos ( 3x-1) dx = ⅓ sin ( 3x-1) + C

5.   ∫ [f(x)]^n f’(x) dx = [1/(n+1)]  [f(x)] ^ (n+1) + C
Contoh:
Tentukan ∫2x √(x²-1) dx
Jawab:
Misal f(x)= x²-1 → f’(x)= 2x
maka
  • ∫ 2x √(x²-1) dx = ∫ [f(x)]^½ f’(x) dx
  • ∫ 2x √(x²-1) dx = [1/(½+1)]  [f(x)] ^ (½+1) + C
  • ∫ 2x √(x²-1) dx = (2/3) (x²-1) ^ (3/2) + C


6.   ∫ sin^n x cos x dx = [1/(n+1)] sin ^ (n+1) x + c
Contoh:
  • ∫ sin x cos x dx = ½ sin²x + c


7.   ∫ cos^n x sin x dx = -[1/(n+1)]cos ^ (n+1) x + c
Contoh:
  • ∫ cos² x sin x dx = -⅓ cos³x + c


8.   ∫ (1/x) dx = ln x + C
9.   ∫ e^x dx = e^x + C

RUMUS INTEGRAL TRIGONOMETRI DASAR

∫ sin x dx = -cos x + c
∫ cos x dx = sin x + c
∫ tan x dx = ln│sec x│+ c
∫ cot x dx = ln │sin x│+ c
∫ sec x dx = ln │sec x + tan x│+ c
∫ csc x dx = ln │csc x – cot x│+ c
∫ sec²x dx = tan x + c
∫ csc²x dx = -cot x + c
∫ sec x tan x dx = sec x + c
∫ csc x cot x dx = -csc x = c

INTEGRAL PARSIAL

∫ u dv = uv - ∫v du

Contoh:
Tentukan ∫x sin x dx !

Jawab:

Misal
x = u → dx = du
sin x dx = dv → -cos x = v

maka
∫x sin x dx = -x cos x +∫  cos x  dx
∫x sin x dx = -x cos x  + sin x + c

INTEGRAL SUBTITUSI

Contoh:
Tentukan ∫ (3x + 1)³ dx
Jawab
Misal 3x + 1 = u → 3 dx = du → dx = ⅓ du
∫(3x + 1)³ dx = ∫ ⅓ u³ du = (1/12) u^4 + c = (1/12) (3x+1)^4 + c


0 comments:

Post a Comment